Area of interest
AI
BUGinnings in IT
Change management
Cloud
Data
Frontend/JS
Kotlin ecosystem
Quantum Computing
Reactive systems
Scala
UI/UX
Tags
AI
Akka
Alpakka
Angular
Apache Kafka
AppSync
AutoML
AWS
Azure
Big Data
Blockchain
C#
C++
Cloud
Cloudstate
CSS
Data Analytics
Data Science
DDD
Deep Learning
DevOps
DNNs
Docker
dokka
Dotty
DSL
Elasticsearch
Event Sourcing
Event-storming
FaaS
Fast Data
Frontend
Fury
GraalVM
GraphQL
Hadoop
HeadlessCMS
hoogle
HTML
IDE
InfluxDB
Information Architecture
Infrastructure
inkuire
Java
JavaScript
Kafka
Knative
Kotlin
KSQL
Kubernetes
Lagom
Lambda
Lean
Libra
Machine Learning
Metals
Micro Frontends
Microservices
Module Federation
Monix
Monolith
Node.js
Observability
OpenShift
Prometheus
PWA
Python
Quarkus
R
React
Reactive
reactive architecture
reactive systems
REST
RPC
RSocket
Ruby
SBT
Scala
Scala 3
Scalac
scalajs
SemanticDB
Serverless
Sidewind
Spark
Spring
Strapi
SVG
Tailwind
tooling
TypeScript
Vert.x
Web-Services
WebGL
WebPack
WebSocket
Zen Discovery
42 results

All talks

loading...
Data Clear all
A/B Testing Madness
Data

A/B Testing Madness

Aleksandrs Gehsbargs
pandas-stubs — How we enhanced pandas with type annotations
Data

pandas-stubs — How we enhanced pandas with type annotations

Joanna Sendorek, Zbyszek Królikowski
Collaborate, Document, Version Deploy with Dss
AI

Collaborate, Document, Version Deploy with Dss

Sofiane Fessi
Trained scikit-learn model refinery with open-source packages
AI

Trained scikit-learn model refinery with open-source packages

Dorota Lączak, Maria Oleszkiewicz
fallback image
Data

How to recommend a personalised product to thousands of clients starting with raw data to real-time serving

Hubert Pomorski
fallback image
AI

AI, Big Data and the new social order

Jacek Leśkow
fallback image
Data

Probabilistic data structures for Kafka Streams

Mateusz Owczarek, Miron Ficak
fallback image
AI

ART 360: Defending AI models against adversarial attacks

Mathieu Sinn
fallback image
Data

Is your phone ready to do machine learning?

Adam Niedziałkowski
fallback image
Data

Data Science with OpenShift

Michael Clifford
fallback image
Data

How likes influence your views

Paweł Rzeszuciński
fallback image
Data

The reasons we do not do Machine Learning any more.

Michał Jakóbczyk
fallback image
AI

How to build an AI from zero to learn to play and solve a tough game

Juan Tomás García
fallback image
Data

Machine Learning in Visual Search

Aleksandra Kunysz
Reproducible Machine Learning
Data

Reproducible Machine Learning

Matthew Opala
fallback image
Data

AutoML at scale

Marcin Szeliga
fallback image
Data

Monitoring with no limits

Nikolay Tsvetkov
AI meets privacy
AI

AI meets privacy

Weronika Dranka
fallback image
Data

Big and smart data in the development of autonomous vehicles

Grzegorz Wyszyński
Improving Sentiment Analysis Code in a DevOps environment
Data

Improving Sentiment Analysis Code in a DevOps environment

Oindrilla Chatterjee
fallback image
Data

The algo magic: from big to small data

Grzegorz Gawron
fallback image
AI

Discussion Panel: Experiences and views on AI adoption

William Benton, Konrad Pabianczyk, Umit Mert Cakmak
fallback image
Data

Programmer 2.0

Vladimir Alekseichenko
fallback image
Data

From Spark MLlib model to learning system with Watson Machine Learning

Łukasz Ćmielowski
fallback image
Data

Stream processing in telco – case study based on Apache Flink & TouK Nussknacker

Maciek Próchniak
fallback image
Data

Collaborative Filtering Microservices on Spark

Rui Vieira, Sophie Watson
fallback image
Data

Luna – presentation

Piotr Moczurad
fallback image
Data

Explaining neural networks predictions

Matthew Opala